Microlocal Hypoellipticity of Linear Partial Differential Operators with Generalized Functions as Coefficients
نویسندگان
چکیده
We investigate microlocal properties of partial differential operators with generalized functions as coefficients. The main result is an extension of a corresponding (microlocalized) distribution theoretic result on operators with smooth hypoelliptic symbols. Methodological novelties and technical refinements appear embedded into classical strategies of proof in order to cope with most delicate interferences by non-smooth lower order terms. We include simplified conditions which are applicable in special cases of interest.
منابع مشابه
Elliptic regularity and solvability for partial differential equations with Colombeau coefficients
The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...
متن کاملElliptic regularity and solvability for PDEs with Colombeau coefficients
The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملGlobal Analytic Hypoellipticity in the Presence of Symmetry
A linear partial differential operator, L, is said to be globally analytic hypoelliptic on some real analytic manifold M without boundary if, for any u ∈ D′(M) such that Lu ∈ C(M), one has u ∈ C(M). It is of some interest to determine under what circumstances this property holds, especially for sums of squares of vector fields satisfying the bracket hypothesis of Hörmander, and for related oper...
متن کامل